MADB Author Report



Author

Author Name  Y. Arai 
Author's Latest Institute  Japan Atomic Energy Agency (JAEA) 
Author Address    
# of Publication  23 
# of Published Data Record  184 
Web Address   
   

PUBLICATIONS

1:  Fabrication of nitride fuels for transmutation of minor actinides
2:  Research on nitride fuel for transmutation of minor actinides
3:  Preparation of neptunium mononitride by carbothermic reduction
4:  Research on actinide mononitride fuel
5:  Recent progress of nitride fuel development in JAERI - fuel property, irradiation behavior and application to dry reprocessing
6:  Vaporization behavior of neptunium mononitride
7:  Vaporization behavior of (Np,Pu)N
8:  Vaporization behavior of (Pu,Am)N
9:  Vaporization behavior of NpN coloaded with PuN
10:  Heat capacity of neptunium mononitride
11:  Thermophysical and thermodynamic properties of actinide mononitrides and their solid solutions
12:  Thermal conductivity of neptunium mononitride from 740 to 1600 K
13:  Thermal conductivity of actinide mononitride solid solutions
14:  Irradiation test of U-free nitride fuel and progress of pyrochemistry in JAERI
15:  Research on nitride fuel and pyrochemical process for MA transmutation
16:  Recent progress of research on nitride fuel cycle in JAERI
17:  Experimental research on nitride fuel cycle in JAERI
18:  Review of actinide nitride properties with focus on safety aspects
19:  A consideration of the thermodynamic and magnetic properties of NaCl-type uranium, neptunium, and plutonium compounds
20:  Recovery of Neptunium by Electrolysis of NpN in LiCl-KCl Eutectic Melts
21:  Studies on pyrochemical reprocessing for metallic and nitride fuels: behavior of transuranium elements in LiCl-KCl / liquid metal systems
22:  Electrochemical behavior of actinides and actinide nitrides in LiCl - KCl eutectic melts
23:  Electrode reaction of the Np3+/Np couple at liquid Cd and Bi electrodes in LiCl - KCl eutectic melts

PUBLISHED DATA

No  Caption Data
1:  Preparation  of  (Cm,Pu)N
(Cm,Pu)N was fabricated from the mixed powder of (Cm0.40Pu0.60)O2 and carbon black by the carbothermic reduction method and heat treatment in N2/H2   
2:  Crystal Structure  of  (Cm,Pu)N
NaCl-type structure    (Room temperature)
3:  Lattice Parameter  of  (Am,Zr)N
Graphical representation for different contents    (Room temperature)
4:  Lattice Parameter  of  (Am,Y)N
a[(Am0.1Y0.9)N] (nm) = 0.4900    (Room temperature)
5:  Lattice Parameter  of  (Np,Pu)N
Graphical Representation for different contents    (Room temperature)
6:  Lattice Parameter  of  (Np,U)N
Graphical Representation for different contents    (Room temperature)
7:  Preparation  of  (Cm,Pu)N
Carbothermic reduction of actinide oxides to obtain actinide nitrides. An excess amount of graphite powder was added to the oxide to avoid residue of the oxide phase.   
8:  Crystal Structure  of  (Cm,Pu)N
NaCl-type structure    (Room temperature)
9:  Lattice Parameter  of  (Cm,Pu)N
Graphical Representation for different contents    (Room temperature)
10:  Vapor Pressure  of  NpN
Discussed in publication    (T = 1630 - 2090 K)
11:  Heat Capacity  of  NpN
Discussed in publication    (T = 323 - 1023 K)
12:  Thermal Conductivity  of  (Np,Pu)N
Graphical representation    (T = 1273 K)
13:  Thermal Conductivity  of  (Np,U)N
Graphical representation    (T = 1273 K)
14:  Preparation  of  NpN
Carbothermic reduction of the dioxide with graphite in flowing N2/H2   
15:  Crystal Structure  of  NpN
NaCl-type structure    (Room temperature)
16:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.489680.00006    (Room temperature)
17:  Preparation  of  NpN
Carbothermic reduction of the dioxide with graphite.   
18:  Crystal Structure  of  NpN
NaCl-type structure    (Room temperature)
19:  Lattice Parameter  of  NpN
Discussed    (Room temperature)
20:  Thermal Conductivity  of  NpN
Graphics or graphical (re)presentation    (from thermal diffusivity, T = 680-1600 K)
21:  Vapor Pressure  of  NpN
Discussed   
22:  Lattice Parameter  of  (Np,U)N
a[(U0.75Np0.25)N] (nm) = 0.48901    (Room temperature)
a[(U0.5Np0.5)N] (nm) = 0.48914    (Room temperature)
a[U0.25Np0.75)N] (nm) = 0.48943    (Room temperature)
23:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.48971    (Room temperature)
24:  Lattice Parameter  of  (Np,Pu)N
a[Np0.67Pu0.33)N] (nm) = 0.49002    (Room temperature)
a[(Np0.33Pu0.67)N] (nm) = 0.49033    (Room temperature)
25:  Vapor Pressure  of  NpN
Graphical representation    (T = 1690-2030 K)
Log PNp(g)(Pa)=10.26-22200/T    (T = 1690 - 2030 K)
26:  Gibbs Free Energy  of  NpN
ΔGf[NpN,s](J/mol)=-295900+89.88T   
27:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.48971    (Room temperature)
28:  Lattice Parameter  of  (Np,Pu)N
a[(Np0.75Pu0.25)N] (nm) = 0.48997    (Room temperature)
a[(Np0.5Pu0.5)] (nm) = 0.49025    (Room temperature)
a[(Np0.25Pu0.75)N] (nm) = 0.49016    (Room temperature)
29:  Vapor Pressure  of  (Np,Pu)N
Graphics    (T = 1270-2010 K)
30:  Vapor Pressure  of  (Pu,Am)N
Graphics   
31:  Enthalpy  of  (Pu,Am)N
ΔHf[AmN](J/mol)=-294000    (at 1600 K)
32:  Gibbs Free Energy  of  (Pu,Am)N
ΔGf[AmN,s](J/mol)=-297659+92.054T   
33:  Vapor Pressure  of  NpN+PuN
Log PNp(g)(Pa)=(12.40.4)-(27800900)/T    (T = 1950 - 2070 K)
34:  Gibbs Free Energy  of  NpN+PuN
ΔGf[NpN,s](J/mol)=(-26900017000)+(74.08.4)T   
ΔGf[Np,g](J/mol)=426000-98.6T    (1900-2100 K)
35:  Heat Capacity  of  NpN
Cp [NpN] = 43.4+2.31x10-2T-7.62x10-6T2-9.08x104T-2 (JK-1mol-1)    (T = 323-1023 K)
36:  Crystal Structure  of  NpN
NaCl-type strucuture    (Room temperature)
37:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.4897    (from graphics)
38:  Heat Capacity  of  NpN
Graphics   
39:  Thermal Conductivity  of  NpN
K[NpN](W/mK)=17.2 at 1273 K    (from thermal diffusivity, from graphics)
40:  Vapor Pressure  of  NpN
Graphics   
41:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.48987    (Room temperature)
42:  Thermal Diffusivity  of  NpN
Graphics    (T = 740-1600 K)
43:  Thermal Conductivity  of  NpN
K[NpN](W/mK)=7.89+1.27x10-2T-4.32x10-6T2    (T = 740 - 1600 K)
44:  Heat Capacity  of  NpN
Cp [NpN] = 52.85 + 2.55x10-3T - 8.37x105T-2 (JK-1mol-1)   
45:  Lattice Parameter  of  (U0.75Np0.25)N
a[(U0.75Np0.25)N] (nm) = 0.48943    (Room temperature)
46:  Lattice Parameter  of  (Np0.67Pu0.33)N
a[(Np0.67Pu0.33)] (nm) = 0.49002    (Room temperature)
47:  Thermal Conductivity  of  NpN
Data given in graphics form.    (T = 740 -1630 K)
48:  Electrode Standard Potential  of  NpN
E = -0.779 E    (T = 723 K, vs. Ag/AgCl reference electrode)
E = -0.773 E    (T = 773 K, vs. Ag/AgCl reference electrode)
E = -0.766 E    (T = 823 K, vs. Ag/AgCl reference electrode)
49:  Crystal Structure  of  AmN
NaCl-type structure    (Room temperature)
50:  Crystal Structure  of  (Cm,Pu)N
NaCl-type structure    (Room temperature)
51:  Preparation  of  Np(C,N)
Intermediate product of carbothermic reduction for synthesizing mononitride   
52:  Lattice Parameter  of  (Am,Y)N
a[(Am0.10Y0.90)N] (nm) = 0.49014    (Room temperature)
53:  Anodic Dissolution  of  NpN
Graphics    (LiCl-KCl, 723 K, 773 K, 823 K)
54:  Electrode Standard Potential  of  NpN
ENpN-Ag/AgCl=-0.730+0.0111 In PN2    (LiCl-KCl, T = 773 K)
55:  Crystal Structure  of  NpN
NaCl-type structure    (Room temperature)
56:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.4897    (Room temperature, from graphics)
57:  Thermal Conductivity  of  NpN
K[NpN](W/mK)=17.2    (1273 K, from graphics)
58:  Vapor Pressure  of  NpN
Discussed   
59:  Vapor Pressure  of  NpN
Graphics    (T = 1873-2073 K)
60:  Preparation  of  NpN
Discussed   
61:  Anodic Dissolution  of  NpN
Graphics    (T = 773 K)
62:  Electrolysis  of  NpN
Discussed    (T = 773 K)
63:  Crystal Structure  of  NpN
Face centered cubic    (Room temperature)
64:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.48971    (Room temperature)
65:  Melting Point  of  NpN
Tm=3103 K    (P = 1 MPa Nitrogen)
66:  Thermal Conductivity  of  NpN
K[NpN](W/mK)=14.5    (T = 773 K (from graphics))
K[NpN](W/mK)=17.3    (T = 1273 K (from graphics))
67:  Entropy  of  NpN
S0[NpN](J/mol K)=60.79    (estimated at 298.15 K in ECN-T base)
68:  Enthalpy  of  NpN
ΔHf[NpN](J/mol)=-299200    (estimated at 298.15 K in ECN-T base)
69:  Vapor Pressure  of  (Am, Pu)N
Discussed    (Thermodynamic consideration)
70:  Lattice Parameter  of  NpN
Table (M-X Distance vs Pauling Radius)   
71:  Binding Energy  of  NpC
Graph (Binding Energy vs Bonding electron density)   
72:  Magnetic Property  of  NpC
Graph (Effective Magnetic Moment vs Number of Localized Electrons)   
73:  Anodic Dissolution  of  NpN
Graphics    (T = 723, 773 and 823 K)
74:  Electrode Standard Potential  of  NpN
ENpN-Ag/AgCl=-0.7663+0.01038 ln PN2    (T = 723 K)
ENpN-Ag/AgCl=-0.7297+0.01110 ln PN2    (T = 773 K)
ENpN-Ag/AgCl=-0.6972+0.01182 ln PN2    (T = 823 K)
75:  Electrolysis  of  NpN
Discussed    (T = 773 K)
76:  Distribution Coefficient  of  NpCl3
Solid cathode Potential(vs.Ag/AgCl)/V:Np=-1,6 B    (LiCl - KCl eutectic, T = 500 K)
77:  Distribution Coefficient  of  AmCl3
Solid cathode Potential(vs.Ag/AgCl)/V: Am=-1,82 B    (LiCl - KCl eutectic, T = 500 K)
78:  Distribution Coefficient  of  NpCl3
Cd cathode Potential(vs.Ag/AgCl)/V: Np=-1,45 B    (LiCl - KCl eutectic, T = 500 K)
79:  Distribution Coefficient  of  AmCl3
Cd cathode Potential(vs.Ag/AgCl)/V: Am=-1,42 B    (LiCl - KCl eutectic, T = 500 K)
80:  Distribution Coefficient  of  NpCl3
Bi cathode Potential(vs.Ag/AgCl)/V: Np=-1,05 B    (LiCl - KCl eutectic, T = 500 K)
81:  Distribution Coefficient  of  AmCl3
Bi cathode Potential(vs.Ag/AgCl)/V: Am=-1,09 ?    (LiCl - KCl eutectic, T = 500 K)
82:  Preparation  of  AmN
Carbothermic reduction of AmO2 and heat treatment in N2/H2   
83:  Preparation  of  (Am,Zr)N
Carbothermic reduction of AmO2, ZrO2 and carbon black and heat treatment in N2/H2   
84:  Preparation  of  (Am,Y)N
Carbothermic reduction of AmO2, Y2O3 and carbon black and heat treatment in N2/H2   
85:  Preparation  of  NpN
Carbothermic reduction of NpO2 in the glove boxes with purified Ar gas atmosphere and heat treatment in N2/H2   
86:  Preparation  of  (Np,Pu)N
(Np, Pu)N was fabricated by mixing the powders of NpN and PuN and heating the mixed powder in flowing N2-H2 at 2023 K.   
87:  Preparation  of  (Np,U)N
(Np, U)N was fabricated by mixing the powders of NpN and UN and and heat treatment in N2/H2   
88:  Crystal Structure  of  AmN
NaCl-type structure    (Room temperature)
89:  Crystal Structure  of  (Am,Zr)N
NaCl-type structure    (Room temperature)
90:  Crystal Structure  of  (Am,Y)N
NaCl-type structure    (Room temperature)
91:  Crystal Structure  of  NpN
NaCl-type structure    (Room temperature)
92:  Crystal Structure  of  (Np,Pu)N
NaCl-type structure    (Room temperature)
93:  Crystal Structure  of  (Np,U)N
NaCl-type structure    (Room temperature)
94:  Lattice Parameter  of  (Cm,Pu)N
Graphical Representation for different contents    (Room temperature)
95:  Lattice Parameter  of  AmN
a[AmN] (nm) = 0.4991    (Room temperature)
96:  Thermal Conductivity  of  (Np,U)N
Graph    (from thermal diffusivity, T = 740-1630 K)
97:  Thermal Conductivity  of  (Np,Pu)N
Graph    (from thermal diffusivity, T = 740-1630 K)
98:  Vapor Pressure  of  (Np,Pu)N
Graph    (T = 1273-2073 K)
99:  Crystal Structure  of  (Np,Pu)N
NaCl-type structure    (Room temperature)
100:  Crystal Structure  of  (Np,U)N
NaCl-type structure    (Room temperature)
101:  Lattice Parameter  of  (Np,Pu)N
Graphics    (Room temperature, for different contents)
102:  Lattice Parameter  of  (Np,U)N
Graphics    (Room temperature, for different contents)
103:  Thermal Conductivity  of  (Np,Pu)N
Graphics    (from thermal diffusivity, for different contents)
104:  Thermal Conductivity  of  (Np,U)N
Graphics    (from thermal diffusivity, for different contents)
105:  Vapor Pressure  of  (Np,Pu)N
Discussed   
106:  Preparation  of  AmN
Carbothermic reduction of americium oxide to obtain americium nitride. An excess amount of graphite powder was added to the oxide to avoid residue of the oxide phase.   
107:  Preparation  of  (Am,Zr)N
Carbothermic reduction of mixed powder of americium oxide and zirconium oxide.   
108:  Preparation  of  (Am,Y)N
Carbothermic reduction of mixed powder of AmO2 and Y2O3.   
109:  Preparation  of  NpN
Carbothermic reduction of neptunium oxide to obtain neptunium nitride. An excess amount of graphite powder was added to the oxide to avoid residue of the oxide phase.   
110:  Preparation  of  (Np,Pu)N
Carbothermic reduction of actinide oxides to obtain actinide nitrides. An excess amount of graphite powder was added to the oxide to avoid residue of the oxide phase.   
111:  Preparation  of  (Np,U)N
Carbothermic reduction of actinide oxides to obtain actinide nitrides. An excess amount of graphite powder was added to the oxide to avoid residue of the oxide phase.   
112:  Crystal Structure  of  AmN
NaCl-type structure    (Room temperature)
113:  Crystal Structure  of  (Am,Zr)N
NaCl-type structure    (Room temperature)
114:  Crystal Structure  of  (Am,Y)N
NaCl-type structure    (Room temperature)
115:  Crystal Structure  of  NpN
NaCl-type structure    (Room temperature)
116:  Crystal Structure  of  (Np,Pu)N
NaCl-type structure    (Room temperature)
117:  Crystal Structure  of  (Np,U)N
NaCl-type structure    (Room temperature)
118:  Lattice Parameter  of  AmN
a[AmN] (nm) = 0.4998    (Room temperature)
119:  Lattice Parameter  of  (Am,Zr)N
Discussed in publication    (Room temperature)
120:  Lattice Parameter  of  (Am,Y)N
Discussed in publication    (Room temperature)
121:  Lattice Parameter  of  NpN
a[NpN] (nm) = 0.4897    (Room temperature, from graphics)
122:  Lattice Parameter  of  (Np,Pu)N
Graphical Representation for different contents    (Room temperature)
123:  Lattice Parameter  of  (Np,U)N
Graphical Representation for different contents    (Room temperature)
124:  Vapor Pressure  of  (Np,Pu)N
Discussed in publication   
125:  Thermal Conductivity  of  NpN
K[NpN](W/mK) = 17    (T = 1273 K, from graphics)
126:  Crystal Structure  of  AmN
Face centered cubic (no transition in the solid phase reported)    (Room temperature)
127:  Lattice Parameter  of  (Np,U)N
a[(U0.75Np0.25)N] (nm) = 0.48901    (Room temperature)
a[(U0.50Np0.50)N] (nm) = 0.48914    (Room temperature)
a[(U0.25Np0.75)N] (nm) = 0.48971    (Room temperature)
128:  Crystal Structure  of  (Np,Pu)N
Face centered cubic    (Room temperature)
129:  Crystal Structure  of  (Cm,Pu)N
Face centered cubic    (Room temperature)
130:  Lattice Parameter  of  AmN
a[NpN] (nm) = 0.4991 .. 0.5005 0.005    (Room temperature, sparse values reported by different authors)
131:  Crystal Structure  of  (Np,U)N
Face centered cubic    (Room temperature)
132:  Lattice Parameter  of  (Np,Pu)N
a[(Np0.67Pu0.33)N] (nm) = 0.49002    (Room temperature)
a[(Np0.33Pu0.67)N] (nm) = 0.49033    (Room temperature)
133:  Lattice Parameter  of  (Cm,Pu)N
a[(Cm,Pu)N] (nm) = 0.4948    (with highest carbon excess)
a[(Cm,Pu)N] (nm) = 0.497    (with lowest carbon excess)
134:  Thermal Conductivity  of  (Np,U)N
K[(U0.75Np0.25)N](W/mK)=16.7    (T = 773 K)
K[(U0.75Np0.25)N](W/mK)=21.7    (T = 1273 K)
K[(U0.50Np0.50)N](W/mK)=15.8    (T = 773 K)
K[(U0.50Np0.50)N](W/mK)=19.6    (T = 1273 K)
K[(U0.25Np0.75)N](W/mK)=15.0    (T = 773 K)
K[(U0.25Np0.75)N](W/mK)=18.2    (T = 1273 K)
135:  Thermal Conductivity  of  (Np,Pu)N
K[(Np0.67Pu0.33)N](W/mK)=11.9    (T = 773 K)
K[(Np0.67Pu0.33)N](W/mK)=13.8    (T = 1273 K)
K[(Np0.33Pu0.67)N](W/mK)=11.5    (T = 773 K)
K[(Np0.33Pu0.67)N](W/mK)=12.8    (T = 1273 K)
136:  Enthalpy  of  AmN
ΔHf[AmN](J/mol)=-294000    (T = 1600 K)
137:  Crystal Structure  of  (Np,Pu)N
NaCl-type strucuture    (Room temperature)
138:  Crystal Structure  of  (Np,U)N
NaCl-type strucuture    (Room temperature)
139:  Lattice Parameter  of  (Np,Pu)N
Graphics    (for different contents)
140:  Lattice Parameter  of  (Np,U)N
Graphics    (for different contents)
141:  Thermal Conductivity  of  (Np,Pu)N
Graphics    (from thermal diffusivity, for different contents)
142:  Thermal Conductivity  of  (Np,U)N
Graphics    (from thermal diffusivity, for different contents)
143:  Thermal Conductivity  of  NpN
Graph    (from thermal diffusivity, T = 740-1630 K)
144:  Gibbs Free Energy  of  NpN
ΔGf[NpN](J/mol)=427000-98.99T    (1700-2100 K)
145:  Lattice Parameter  of  AmN
a[AmN] (nm) = 0.49980.0001    (Room temperature)
a[(AmN)] (nm) = 0.50030.0001    (Room temperature, with Am2O3 phase)
146:  Lattice Parameter  of  (Cm,Pu)N
a[(Cm,Pu)N] (nm) = 0.49480.0001    (Room temperature)
a[(Cm,Pu)N] (nm) = 0.49740.0002    (Room temperature, with Cm2O3 and PuO2 phases)
147:  Preparation  of  AmN
Carbothermic reduction   
148:  Preparation  of  (Cm,Pu)N
Carbothermic reduction   
149:  Electrode Standard Potential  of  NpN
E = -0.779 V    (T = 723 K, vs. Ag/AgCl reference electrode)
E = -0.773 V    (T = 773 K, vs. Ag/AgCl reference electrode)
E = -0.766 V    (T = 823 K, vs. Ag/AgCl reference electrode)
150:  Density  of  AmN
d (g.cm-3) = 13.616 .. 13.731    (from lattice parameter)
151:  Density  of  (Np,U)N
d[(U0.75Np0.25)N](g.cm-3)=14.302    (from lattice parameter)
d[(U0.50Np0.50)N](g.cm-3)=14.277    (from lattice parameter)
d[(U0.25Np0.75)N](g.cm-3)=14.237    (from lattice parameter)
152:  Density  of  (Np,Pu)N
d [(Np0.67Pu0.33)N](g.cm-3)=14.303    (from lattice parameter)
d [(Np0.33Pu0.67)N](g.cm-3)=14.406    (from lattice parameter)
153:  Magnetic Property  of  NpN
Graph (Effective Magnetic Moment vs Number of Localized Electrons)   
154:  Lattice Parameter  of  (U0.5Np0.5)N
a[(U0.5Np0.5)N] (nm) = 0.48914    (Room temperature)
155:  Lattice Parameter  of  (U0.25Np0.75)N
a[(U0.25Np0.75)N] (nm) = 0.48943    (Room temperature)
156:  Lattice Parameter  of  (Np0.67Pu0.33)N
a[(Np0.33Pu0.67)N] (nm) = 0.49033    (Room temperature)
157:  Gibbs Free Energy  of  Np
ΔGf[Np,g](J/mol)=427000-98.99T    (Derived from the values given by Oetting et al [MADB PubID=125].)
158:  Preparation  of  NpCl3-LiCl-KCl
NpO2 mixed with carbon in N2-8%H2 in gas stream at T = 1550 C, NpN + Pt at T = 800 C, NpPt3 dissolved in Cd(l), react with CdCl2 in LiCl-KCl eutectic at T = 500 C   
159:  Gibbs Free Energy  of  Np in Bi(l)
Δ G xs Np in Bi(l) = - 32.5 + 0.00723 T kcal/g.atom    (T = 400 - 500 C)
160:  Distribution Coefficient  of  Np in Cd(l)
Δ G xs Np in Cd(l) = - 8.6 kcal/g.atom    (T = 400 C)
Δ G xs Np in Cd(l) = - 7.8 kcal/g.atom    (T = 450 C)
Δ G xs Np in Cd(l) = - 7.3 kcal/g.atom    (T = 500 C)
161:  Solubility  of  Np in Bi(l)
Solubility (at%) = 0.34    (T = 400 C)
Solubility (at%) = 0.62    (T = 450 C)
Solubility (at%) = 1.05    (T = 500 C)
162:  Solubility  of  Np in Cd(l)
Solubility (at%) = 0.37    (T = 400 C)
Solubility (at%) = 1.04    (T = 450 C)
Solubility (at%) = 2.20    (T = 500 C)
163:  Thermal Conductivity  of  (U0.75Np0.25)N
Data given in graphics form.    (T = 740 -1630 K)
164:  Thermal Conductivity  of  (Np0.67Pu0.33)N
Data given in graphics form.    (T = 740 -1630 K)
165:  Thermal Conductivity  of  (U0.5Np0.5)N
Data given in graphics form.    (T = 740 -1630 K)
166:  Thermal Conductivity  of  (U0.25Np0.75)N
Data given in graphics form.    (T = 740 -1630 K)
167:  Thermal Conductivity  of  (Np0.33Pu0.67)N
Data given in graphics form.    (T = 740 -1630 K)
168:  Gibbs Free Energy  of  NpN
169:  Oxidation-Reduction  of  NpN
E [NpN] = -0.7730.005; T = 773K   
170:  Oxidation-Reduction  of  NpN
171:  Oxidation-Reduction  of  Np-Bi
ΔGf0 = 121 kJ mol-1 , T =773 K   
172:  Gibbs Free Energy  of  Np-Cd
ΔGf0 = 40.5 kJ mol-1 , T =773 K   
173:  Oxidation-Reduction  of  Np3+/Np
E0' (Np3+/Np) = -2.0298 + 0.000706 T (V versus Ag+/Ag)   
E0' (Np3+/Np) = -3.0957 + 0.000521 T (V versus Cl2/Cl-)   
174:  Oxidation-Reduction  of  Np3+/Np
E0' = -1.4845 V vs. Ag+/Ag (1 wt.%)   
E0' = -2.6900 V vs. Cl2/Cl-   
175:  Oxidation-Reduction  of  Np3+/Np-Bi
E0' (Np3+/Np-Bi) = -1.066 (V versus Ag+/Ag)   
176:  Oxidation-Reduction  of  Np3+/Np-Cd
E0' (Np3+/Np-Cd) = -1.345 (V versus Ag+/Ag)   
177:  Gibbs Free Energy  of  NpCl3
ΔGf0 = -778.63 kJ mol-1   
178:  Others  of  NpBi2
179:  Others  of  NpCd11
180:  Others  of  NpCd6
181:  Oxidation-Reduction  of  Np3+/Np
182:  Oxidation-Reduction  of  Np3+/Np
Data presented in Table: Cathodic and anodic peak potentials, Ecp and Eap , and cathodic half-peak potential in the cyclic voltammograms for the redox reaction of the Np3+/Np couple at liquid Cd elect   
183:  Oxidation-Reduction  of  Np3+/Np-Bi
Er [Np3+/Np-Bi] = -1.092 V    (T = 723 K)
Er [Np3+/Np-Bi] = -1.066 V    (T = 773 K)
Er [Np3+/Np-Bi] = -1.037 V    (T = 823 K)
184:  Oxidation-Reduction  of  Np3+/Np-Cd
Er [Np3+/Np-Cd] = -1.361 V    (T = 723 K)
Er [Np3+/Np-Cd] = -1.345 V    (T = 773 K)
Er [Np3+/Np-Cd] = -1.321 V    (T = 823 K)
     

Previous   (K. Minato) (K. Nakajima)   Next